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is written, apart from a constant factor, in the form 

Integrating (4.1) twice by parts, a power-law singularitycanbe extracted that occurs at 
the angular point (al. u2) in the form 

Analogous power-law singularities are obtained at angular points when investigating the 
other components in the expression for Q,j. 

1. 

2. 
3. 

4. 
5. 

5. Results of numerical investigations. Formally 
setting a,t, = a&, = qO, a, = a2 = 0 in (1.6) and (3.5), we will obtain 
the solution of the stationary heat conduction problem and the 
corresponding staticthenno-elasticity problem for a plate with a 
rectangular cutout on whose boundaries the heat flux p0 is given. 
For this case the dimensionless temperature field e= TX/q,6 was 
computed as a function of X,=x,/6 for A,= q/6== 10, A, = a&i = 20, 

Bi = @I?~ = 0.1 and different X, = x1/6 . A 20 x 20 and 40 x 40 
matrix of the truncated system was formed in solving system 
(1.7) by the method of reduction. Results of the calculations are 
practically identical. The results of the temperature field com- 
putations are represented as graphs in the figure for X,=10; 11.25, 
12.5 (curves 1, 2, 3, respectively). It follows from the graphs 
that the maximum value of the temperature is achieved at the angular 
point. The temperature is equalized with distance from the boundary. 
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ACTION OF A UNIFORMLY VARIABLE MOVING FORCE ON A TIMOSHENKO BEAM 
ON AN ELASTIC FOUNDATION, TRANSITIONS THROUGH THE CRITICAL VELOCITIES* 

YU.D. KAPLUNOV and G.B. MURAVSKII 

The vibrations of an infinite Timoshenko-type beam on an elastic foundation 
subjected to a force whose point of application moves over the beam with 
constant acceleration are considered. Resonance effects associated with 
the transition of the velocity of motion of the load through three critical 
values characteristic for the system being considered are studied. 
Asymptotic representations are constructed for the solution of the problem 
corresponding to the load acceleration approaching zero. 
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Cases of high-velocity loads acting on a structure of large extent 
are encountered more and more often in engineering. In this connection 
it becomes of greater importance to take account of the resonance phenomena 
determined by the presence of so-called critical velocitiesin,amechanical 
system. If the slowly changing velocity of motion passes through a 
critical value, we would expect, by analogy with the well-known phenomenon 
of the "passage through resonance", that the growth of displacements of 
the points of a mechanical system would be all the more explicit the 
smaller the magnitude of the acceleration of the moving load. Such 
questions were studied in /l-4/ as they apply to certain one-dimensional 
systems. A Timoshenko-type beam on an elastic foundation is an example 
of a more complex system; it has three critical velocities, the first of 
which is due to beam and foundation interaction, while the other two 
correspond to velocities of shear and tension-compression wave propagation 
in the beam material. 

1. Construction of the solution of the problem. Let a force P, whose point of 
application moves along the X axis according to the law s (t)= u,t+ wt%, be applied to an 
infinite Timoshenko beam resting on an elastic foundation at the time t=o. Here s is the 
distance between the point of application of the force and the origin, u,>O is the initial 
velocity w> 0 is the acceleration, and the upper sign corresponds to accelerated motion, 
and the lower to retarded motion. We introduce the dimensionless quantities 

zt($)‘” I “=z(&)“‘) s,(+u,,T+K$ 
n&a 

(--I 
‘I. 

UOI = “0 4kEJ ’ 
q = rum 

(4k3El)“h 

where k is the coefficient of elasticity of the foundation , m is the mass per unit length of 
the beam, and EJis the bending stiffness. We will represent the beam deflections in the form 

(1.1) 

where c= z- Q(Z) is the dimensionless coordinate of a point of the beam in the moving 
coordinate system, and u(&'c) is the solution corresponding to the action of an instantaneous 
unit impulse. According to /S/ 

Here G is the shear modulus, F is the section area, I is the moment of inertia per unit 
length of the beam relative to the neutral plane , and a, is a coefficient which depends on 
the shape of the section (for a rectangular section a,-i,2). 

Substituting (1.2) into (1.1) and putting n=r -rr we obtain 

P 
Y = Y& 

” = 2 (WF(EI)‘I* 
co 

(1.3) 

(1.4) 
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Jh.y = \ exp I-- (anr2 + 2M1,)ldn, 
0 

v = l/w,, vr = vol 2 wr,r, Au, = vr - Vo1 

n1= n/v, a = *'l&h 

bkY = --‘/,iv [hv, + (-l)‘yl (y = a, p; k = 1, 2) 

The integrals Jhy are expressed in terms of the probability integral /6/ 

Jp$j; $lF(z+ exp( ZEY - zEcr)F (~,kY)l 

F(z)= sxpz2erfc(z)zky = - sxp(~q) 1/g i [hv, + (- l)k r] 

(1.5) 

(1.6) 

The quantity zOkY is obtained from zky by replacing vrby Vol. 
we use well-known expansions of the probability integral /6/ in calculating F(z) - 
Let us examine the case of uniformly accelerated motion ofthe force P over the beam in 

more detail. To perform the numerical computations , especially for large values of v, it is 
important to determine the position of the points Zh.yrzOky (~=a, fi) in the complex plane for 
different values of the parameters Vr,Viu and the variable of integration h. According to 
(1.6), the points zzy and zozy lieinthe third quadrant of the complex plane for h>O. To 
improve the convergence of the asymptotic series we apply the symmetry relationship /6/ F(- 
z)= 2 expzz - F(z) for the quantities F(zw) and F(z,,) in (1.5). Let us consider the 
quantity zla. This point will lie in the right half-plane for all h_> 0 if a> AVr. This last 
requirement is satisfied for fairly small values of vi. The boundary value of the dimensionless 
velocity Ur * is found by equating zlcL to zero and requiring that the root h be multiple. The 
condition zla=O reduces to the form 

cl4 - CDL2 + 4 = 0 

c=(l-SSu,y(l-$), d=v,a(4+3-+- 

We obtain from the condition of multiplicity of the root 

vl*= s i R= 
-&ss+ [(G -+8S)2+(16-+-)(4-~)s]1'*jr*/4-~l-1 (1.7) 

The value ofv,*obtained as a result agrees with the value of the critical velocity v1 

resulting in unboundedness of the stationary solution corresponding to uniform motion of the 
force /5/. The positive root of the equation z,, (k)= 0 will be h = h* = ('/,dlc)'l* where c and 
d are determined for vi= vr*. As has been shown in /5/, v,*( R'la, vr*< S-'h,vi* < 1. The 
quantity R'l*corresponds to the shear wave velocity in the beam and s-'/g to the tension-com- 
pressionwavevelocity. Wenotethatthequantity V r*results in a positive root h* under the 
additional requirement /5/ 

R > 2 IS + (9 + 16)‘/*]-’ (1.8) 

If vr exceeds vl* but is less than R%,then for two values of h determined from the equation 

a -Lv,= 0 (1.9) 
transition of the pointz rafrom the right half-plane to the left occurs, and vice-versa. The 
appropriate values of h will be 

al,,= (q)“‘, D=ds- 16c (1.10) 

AS VI-+ R'l* we have hz+w, h,+ 2/(4R + S - R-l)% If vrexceeds R’/l we have just one 
positive root of (1.9) that agrees in form with h, according to (1.10). 

The remark made above that refer to the behaviour of the quantity zr, remain valid even 
for the quantity zola with v1 replaced by v,,r. We will consider accelerated motion under the 
condition that v,,< vr *. Then the point zala will be in the right half-plane for all a> 0. 
To evaluate the component F(z,,) for vr*< v,< R’la and hr<h<hz, as well as for vr > R’l* 
and a>a,, we use the symmetry relationship already mentioned and subsequent application 
of standard expansions. In connection with the quantity J,zthe behaviour of the points zrz 
and ZOli? should be considered. The point zrs (zor~) is in the right half-plane for h> 0 if 
vr < S'JS (vol < S-l/:). If vr > S-'/a (vol > s-'J'), then a point h of the passage of Zrfj(z& from the 
right to the left half-plane occurs; the expression for this point agrees with AZ according 
to (1.10). 
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Assuming that (1.8) is satisfied, we write the final expression for the quantity ~(~,vr) 

(r01 -C VI*) 

(1.11) 

(1.15) 

QW=-&(-$&)‘“Re(BXP [i(h6+ $)](Il’a-W}l 
$v=fu IF hy) + F(-- 224 - exp (z& - z:W)p (zlW) - 

exP (& - z&)F(- zOdl 

@r(h) is obtained from @((a) by replacing F(z,,) by -F(-z,,), (I$@) from @r(h) by replacing 

F (~1s) by --F (--ZIB). 
No difficulties should be encountered in performing calculations using (l.ll)-(1.15) if 

the parameter v does not take large values. However, it is the case of large values of Y 
(small accelerations), for which resonance growth of the deflections and stresses should occur 
at the critical velocities, that is of greatest theoretical and practical interest. The 
calculational difficulties for large values of Y are associated with rapid oscillations of 
the functions Q,(1). Moreover , the neighbourhoods of the points hI and h, at which the quantities 
zlY vanish require attention. At the points h, and hz the functions 4, (h), aI (h), Q2 (h) grow 
as the parameter v increases since F(O)= 1 while growth of the functions already does not 
occur for h #ah,,ha. Because of the abrupt change in the integrands the mentioned neighbourhoods 
must be shrunk with a simultaneous increase in the number of nodes of the quadrature formula. 
The difficulties associated with the rapid oscillations are overcome by application of a Filon- 
type quadrature formula. 

Note that components containing Zo(ry can be discarded in the solutions (l.ll)-(1.15) for 
large values of v. These components represent the transient and damp out rapidly as the 
quantity Au, increases, which is assured by the oscillating factor exp(& -z&y) (an 
additional exponentially decreasing factor appears when dissipation is taken into account). 

2. Asymptotic behaviour of the solution as v-+00. The case v,< ul*. Only the 
first terms of the asymptotic expansion of the probability integral can remain in (1.11); 
consequently, we arrive at a stationary solution corresponding to the running value of the 
dimensionless velocity VI /5/. 

The case v1 = ul*. Now for a small neighbourhood of the point of application of the force 
an increase in the deflections is characteristic as the parameter v increases. The main term 
of the asymptotic form is generated by a neighbourhood of the point h*, where zra vanishes 
together with its derivative 

zla =: (~/~*‘)‘~*2-%” (h*) exp (k/4) (h - h*)2 (2.1) 
Making the substitution 

c = y'k2-V. [a" (A*)]% (j"*)-'/. (h - A*) 72.2) 

for the integration over the neighbourhood mentioned and keeping only the component with 
F (zra) in the solution (1.111, we arrive at the asymptotic representation 

P G %*I e & r (+) (* )‘” fcr (a*) InD, (a*) a” (a*)]-“~ x 03s (a*5 + +) (2.3) 

The case vl* < v1 < RI% To construct the asymptotic representation of the solution, the 
neighbourhood of the points h, and h, should be studied for the integration of 0((h) and PI(~), 
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as should the stationary points of the integral of Qa((h). For the investigations of the 
stationary points we write 

The behaviour of the derivative h,'(h) is shown in Fig.la (ur= 1) in the case under 
consideration (the graphs in Fig.1 correspond to the values R'i*=f.s, s'h=b, and ur* = 0.932). 
The points h,,k,,h3 are stationary and the second derivative of the function h,(h) vanishes 
at the points h, and I,. 

Fig.1 

Without going into detail , we say that for small 161 thecompleteasymptoticrepresentation 
is determined by the sum of the stationary solution /hr and the contribution of the stationary 
point h, 

It is clear from Fig.1 that values 5~ can be mentioned for 
in the deflections should be expected as v grows. Indeed, for 
5VZ = ---ha' (&.) at the points &and h, we will have second-order 
result in asymptotic representations of the form 

(2.5) 

which the most intense increase 
5~ = &i= --ha' (h4) and Cy = 
stationary points that will 

6 I h,“‘ P.4 I 

The formula for p (&, ur) is obtained from (2.6) by replacing cV, by &, and &by a,. 
The case V,=R'l*. As the parameter vr approaches the quantity R'l* from below, the point 

AZ goes to infinity. The estimationofthe contribution of the infinitely remote point h, 
represents the greatest complexity in constructing the asymptotic representation of the solution 
For 5~0 the replacement c=k-;'le is made, which removes the point mentioned to the origin. 
Components that increase as v'l* as Y increases occur during the integration of each of the 
functionsQ,and Q, in the neighbourhood of a=O; however, these components are mutually 
annihilated in satisfying condition (1.8). Consequently, for c=O the asymptotic form 
(2.5) is valid, where the componentILl for c=Ovanishesfor 5~0. Calculations show that the 
asymptotic form (2.5) actually remains valid for g< 0. 

We note that in the case when condition (1.8) is not satisfied the quantity p increases 
v'J8 as Y increases for l;=O, which corresponds totheresult for a string or a rod in which 
only shear strains occur /2/. In this case the two critical velocities vlt and R'/I merge into 
one RI*. 

The case R'l~<u,<S-% The form of the dependence h,' is shown in Fig.lb (v,= 1.8). For 
a small neighbourhood of the point of application of the force the asymptotic form contains 
the stationary solution pr /5/ to which the contribution of the stationary points &and h, 

should be added for v, close to R'/a (ha' (h6)< 0). 
If &'(hJ> 0 (as V, approaches S-'/*),then the complete asymptotic form is determined by 

PI. 
We also considered a point on the beam with abscissa & = Lvs = -_ha' (00) = --V2 (vr - R'/.)2. 

In this case there is a stationary point for the integral of the function Q&(h) located at 
infinity. It turns out that when condition (1.8) is satisfied the deflections at the point 
5 VII decrease as v increases;if this condition is not satisfied , then as in the case of a 
string /2/, an increase in the deflections occurs at the point 5~3 as v increases for 
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velocities close to R"*. Note that the derivative of the deflections with respect to the 
variable c becomes infinite for the point cVvs +O. 

The case v1 > PI*. Now it is necessary to take account of the appearance of a point h, 
on the real axis where the quantity a,6 vanishes. The point h, will be stationary for an 
integral of the function @6(h) for z+> S+ and an abrupt change in the function @z (J") 
occurs in the neighbourhood of this point for large values of Y. 

For a small neighbourhood of the point of application of the force, the asymptotic form 
is reduced to the stationary solution for uniform motion of the force /5/. In addition to 
the points tl, h. SvS, consider earlier the point cyI determined by the value of &== 
-_htl'(&) should be considered (for h=X, the quantity h< reaches a maximum). According to 
the method of stationary phase , the neighbourhood of the point h, yields a contribution to 
the quantity p for &,= tr that increases as v'i*, however because of the rapid decrease in 
the function @6(h) as h increases, the quantity ~((s,,.,, ul) remains small even for very large 
values of Y. 

3. Results of numerical calculations. The 
examples presented below for numerical calculations 
illustrate the dynamic effects associated with passages 
through the critical velocities. The calculations were 
performed for values of the parameters B'b = 1.5. S-V* = 4 

and vl* = 6.932. The graphs in Fig.2 demonstrate the passage 
through the first critical velocity I+* for j= 0. Curves 
2, 2, 3 correspond to the values v= 190, 500, and 1000. 
The dashed curves correspond to asymptotic representations 
for the cases "l<~1* and ut*<ul< R% which approximate 
the solution outside a small neighbourhood of the critical 
velocity ul* quite well. For V, = u,* the asymptotic form 
(2.3) should be used, which results in several correct 
significant figures even for v=100, as calculations 
show. 

p(o,v,l 

Y 

D 

-Y 

Fig.2 Presented in Fig.3 for the case Y= 1000 are results 
corresponding to the points t,, (curve 1) and 5,, (curve 2). 

Also given here is a comparison with the asymptotic (dashes). We note. that as the parameter 
v1 tends to the value cl* the quantities i,, and 5,, tend to zero, consequently for VI= VI' 
the ordinates of the graphs in Fig.3 agree with the corresponding ordinate in Fig.2. For 
velocities V, larger than 4* the values of the deflections at the point 5,, turn out to be 
greater than for 5= 6. 

Fig.3 Fig.4 

We note that the behaviour of the deflections of a Timoshenko beam during the passage 
through the first critical velocity is analogous to the results for the Bernoulli-Euler beam 
/4/. Fig.4a shows graphs of the quantity p(O,v,) for v=50. The dashed curve corresponds to 
the Bernoulli-Euler beam (R-W, S-O), and curves 1, 2 correspond to the parameters R = 2.25, 
8 = l/l6 and R = 10, S = I/64. As is seen, the results change insignificantly for the range of 
variation of the parameters R,S considered. 

Fig.4b shows the passage through the second critical velocity RLk, where deflections at 
the point of application of the force 6-O are considered. The parameters R and S are as 
before (R'/* = 1.5, S-'J'* = 4). Curves 1, 2, 3 correspond to the values V= 100,560,*~0. The de- 
flections increase as the parameter v increases, where the greatest values are achieved after 
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the time Q == H"?. For the case Y-- 11NJlJ the graph of the asymptotic representation (2.5) is 
shown by dashes for rl< RL2, and (2.7) for I‘] > ]?'iZ As already mentioned, the asymptotic form 
(2.5) turns out to be valid even for t'1 : H"*. 

For a further increase in the velocity u1 and large values of the parameter % the solution 
of the problem approaches the stationary solution 1~~ which, if only the beam deflections are 
kept in mind, does not exhibit resonance effects when the velocity passes through the value 
S-'/l. Consequently, the numerical data reflecting the passage through the velocity S-': are 
not presented. 

In conclusion, we note that the method elucidated above can be used even to study the 
stresses in a beam. Thus, in place of the function u in (1.2) it is sufficient to apply the 
expression for the bending moments under the action of an instantaneous impulse on a beam 
/5, 7/ when considering the bending moments. An increase in the bending moments as the 
parameter Y increases will occur on passing through all three critical velocities I.~*,K"P,s-"~. 
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SOLITARY LONGITUDINAL WAVES IN AN INHOMOGENEOUS NON-LINEARLY ELASTIC ROD* 

A.M. SAMSONOV and E.V. SOKURINSKAYA 

The solution of the Cauchy problem for the equation of longitudinal 
displacement wave propgation in an infinitely long elastic rod is con- 
sidered taking the physical and geometric non-linearities of the material, 
the wave dispersion, and inhomogeneinies of the second and third order 
elastic moduli into account. A slow change in the elastic moduli in the 
wave propagation direction results in a perturbation of the equation of 
the problem solvable by the method of multiscale decomposition. It is 
shown that for certain initial data the solution of the problem is a 
soliton in the longitudinal displacement velocity. The soliton parameters 
are detiermined by the elastic moduli of the material, and its propagation 
over the rod is accompanied by a low-amplitude long-wave (plateau). 
Relations are derived between the elastic moduli for which the soliton 
amplitude remains constant or the plateau is not formed behind the main 
impulse. Under other initial conditions the Cauchy problem is solved 
numerically, andshaping of the solitary waves is investigated. Soliton 
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